The Challenges of Lithography

Jack Chen NanoPatterning Technology Co.

We are creating the future!

HE /

thography

2019

Workshop

Self

SPACEX

Nikon

INTERNET OF THINGS 2019/3/1

What we want

- Faster, lighter
- More integrated functions
- Less power dissipation
- Cheaper
- Custom design/Personalized design
- Privacy and Security

2019/3/1

Moore's Law Keep Going...

10 nm and 7 nm forecasts are Intel estimates, based upon current expectations and available information. Source: Intel

IC Knowledge cost models: Chip industry is succeeding in scaling density and costs.

Cost Projections

(Source: Scotten Jones presentation at 2017 SEMI ISS)

SEMI Industry Strategy Symposium (ISS)

ITRS roadmap 2009

continuous improvement

development underway

"The limit of lithography will not be in resolution but in economy."

– Dr. Burn J. Lin, in 1987

All about Money / Time!

R&D, Capital investment and Readiness in time

Innovation-1: Immersion stop 157nm

Innovation-2: SADP push out EUV

All about Money / Time!

- R&D, Capital investment and Readiness in time
- Wafer cost
- Cycle time

Contribution of Capital to Wafer cost = $\frac{Capital \ depreciation}{Throughput \times Uptime}$

11

Tool price doubles every ~4.5yrs

EUV may not save cost!

EUV extension roadmap

NPT

ASML

Resist Performance trade off Throughput!

Peter De Bisshop, IMEC 2015

Hi-NA EUV has a half field!

\rightarrow Half field or double masks!

EUV simplify process and shorten cycle time!

EUV simplify overlay tree!

18

NPT

- "The limit of lithography will not be in resolution but in economy."
 - Dr. Burn J. Lin, in 1987
- "The devil is in the mask!"
- Dr. Burn J. Lin, in 2007

All about Money / Time!

- R&D, Capital investment and Readiness in time
- Wafer cost
- Cycle time
- Mask cost

Contribution of Capital to Wafer cost = $\frac{Capital \ depreciation}{Throughput \times Uptime}$

Contribution of Mask to Wafer cost = $\frac{Mask \ cost}{Wafers \ \#}$

Transistor cost?

Chip/function/device price!

Escalating cost of a mask-set

Process (microns)	2.0	0.8	0.6	0.35	0.25	0.18	0.13	0.1
Single Mask Cost (\$K)	1.5	1.5	2.5	4.5	7.5	12	40	60
# of Masks	12	12	12	16	20	26	30	34
Mask Set cost (\$K)	18	18	30	72	150	312	1000	2000

TSMC Mask and Wafer Counts

Less Masks doesn't save money!

Life Cycle of a EUV Mask

Anthony Yen EUVL Symposium 2013

EUV Pellicle Life Time is concern!

- The fragile <30-nm membrane has to be strong enough to against <u>high G-force</u>, <u>thermal loading</u>, and <u>H*</u>!
- Broken pellicle becomes flake particles inside the scanner
- Re-mounting pellicle takes long time due to inspection!

Unhealthy Eco-System!

- Sole (EUV) scanner supplier, and very expensive EUV scanner
- Only 3 giant ICMs
- Mask inspection, pellicle, and new resists still need further development
 - Can only pre-test at IMEC and a few academic sites
 - High risk in developing new materials
- Extremely high mask cost for new product development and prototyping

Stronger resist is required, but...

Risk or Opportunity? Severe Reduction in Number of Fabs

Altis Semiconductor Dongbu HiTeck Grace Semiconductor SMIC	Dongbu HiTeck Grace Semiconductor SMIC UMC			(Source: IH	S iSuppli)	
TSMC	TSMC	SMIC				
Globalfoundries	Globalfoundries	UMC				
Seiko Epson	Seiko Epson	TSMC				
Freescale	Freescale	Globalfoundries	SMIC			
Infineon	Infineon	Infineon	UMC			
Sony	Sony	Sony	TSMC			
Texas Instruments	Texas Instruments	Texas Instruments	Globalfoundries			
Renesas (NEC)	Renesas	Renesas	Renesas			
IBM	IBM	IBM	IBM	UMC		
Fujitsu	Fujitsu	Fujitsu	Fujitsu	TSMC		
Toshiba	Toshiba	Toshiba	Toshiba	Globalfoundries	TSMC	
STMicroelectronics	STMicroelectronics	STMicroelectronics	STMicroelectronics	STMicroelectronics	Globalfoundries	TSMC
Intel	Intel	Intel	Intel	Intel	Intel	Samsung
Samsung	Samsung	Samsung	Samsung	Samsung	Samsung	Intel
130nm	90nm	65nm	45/40nm	32/28nm	22/20nm	10/7nm

Demand for Maskless Lithography

- Niche applications for < 100nm Lithography
 - Prototyping and low-volume special applications using existing 8" or 12" Si technology
 - 5G mmWave, RFID on III-V wafers
 - Photonics, flat optics, spectral filters
 - Large size devices, ex: NIL mold

Low volume for each custom design!

29

•

•

•

•

•

Unique ID for Chip Security

Data security

Traceability

Automotive

IoT gadgets

Smart cards

Mobile storage

- Aviation
- Medical
- Postal
- Retail •

Anti-counterfeiting

Defense spare IC's for 20+ year old equipment

Industrial infrastructure

- Luxury goods
- Bank bills, coins

MEB300 University-Industry Alliance

Since Oct'17

Summary

- Giving enough money and time, with all experts and efforts in this SPIE society, any lithography issues can be resolved!
 - Impressive progress of EUV pellicle and NIL!
- EUV, mask-based lithography is a game for rich, big companies and only good for high volume products.
- Considering economy, if no absolutely advantage shown in time, then the existing technology with the least change will most likely do.
- To incubate the innovative niche applications, maskless lithography with resolution <50nm is crucial.

Thank you for attention!

