BRAIN-INSPIRED COMPUTING FOR ADVANCED IMAGE
AND PATTERN RECOGNITION
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IMAGE RECOGNITION: KEY FOR FUTURE APPLICATIONS

Assembléee Nationale
Obélisque de Louxor

= Rue Royale
Near rue Saint-Honoré |
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ImageNet: Classification

# Give the name of the dominant object in the image

# Top-5 error rates: if correct class is not in top 5, count as error
» Black:ConvNet, Purple: no ConvNet
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NEURAL NETWORKS (CNN) ARE LEADING!

COMPETITION ON IMAGENET: SINCE 2012, CONVOLUTIONAL

From NVIDIA
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'F Deep Learning is Everywhere Y LeCun

(ConvNets are Everywhere)

# Lots of applications at Facebook, Google, Microsoft, Baidu, Twitter, IBM...

» Image recognition for photo collection search
» Image/Video Content filtering: spam, nudity, violence.
» Search, Newsfeed ranking

8 People upload 800 million photos on Facebook every day
¥ (2 billion photos per day if we count Instagram, Messenger and Whatsapp)
# Each photo on Facebook goes through two ConvNets within 2 seconds
» One for image recognition/tagging

» One for face recognition (not activated in Europe).

@ Soon ConvNets will really be everywhere:

® self-driving cars, medical imaging, augemnted reality, mobile devices, smart
cameras, robots, toys.....

Leti Devices Workshop | Marc Duranton | December 4, 2016
I



DEEP LEARNING AND NEUROMORPHIC
SYSTEMS AT LETI AND LIST

EXPLORATION &
EXPLOITATION
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Neuromorphic:

MATERIALS & DEVICES
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DEEP LEARNING AND NEUROMORPHIC
SYSTEMS AT LETI AND LIST

Exploitation of Deep Neural Networks

* Image recognition, annotation and
indexing

Tools for fast and accurate Neural

Network (NN) exploration & Architecture

benchmarking: N2D2

* Neural Network exploration (including with
spike coding and new materials)

EXPLORATION &
EXPLOITATION
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N2D2: PLATFORM FOR DEVELOPING DEEP
NEURAL NETWORK APPLICATIONS

°* N2D2 is a platform to design and generate deep neural network (DNN) and
to select the computing platform which fit best application needs

* Fast benchmarking of Components Off the Shelf and exports to dedicated

ASIC:
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Test
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Parallel processors (OpenCL, OpenMP)
GPU (OpenCL, Cuda, CuDNN)

FPGA (RTL, HLS)

Leti & List specific processors (like P-Neuro)

)
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GPU
FPGA

NN
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Reptile
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FAST AND ACCURATE NN EXPLORATION

Automated architecture mapping and benchmarking too | flow

1) Deep network builder 2) Learning a database  3) Analysis of network
performances
; Environment Type=Pool

[env] PoolWidth=2 ; Output

SizeX=8 PoolHeight=2 Learnlng p

Sizev=8 NbChannels=32 categories and

ConfigSection=env.config Stride=2 - ' -

[env.config] ; Third layer (fully connected) L

ImageScale=0 [fc1] 3
Input=conv2 s

; First layer (convol —me=k — — — Test .

[convi] - == - " . "

Input=env Firrrd

Type=Conv - i .‘.

= - '

KernelWidth=3
KernelHeight=3

Recon. rate

Recon
“-rate

NbChannels=32
Stride=1

N2D2 software framework
; Second layer (pooling)
[pool1]

Input=convl

l,lnference phase

4) CPU, GPU and FPGA-based real-time implementation

Il OpenMP
Il OpenCL
B HLS FPGA
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EXAMPLE OF INDUSTRIAL APPLICATION of N2D2:

ROLLING MILL
.
©

CONSTRAINTS SOLUTION

e  Real time with very high throughput (20m/s) - Database labelling and Processing
e Tiny defect (~mm) with low contrast == Fast NN topology Exploration
*  Complex environment (oil vapor, few space for inspection..) == Performance vs complexity analysis

= Real time performance achievable on FPGA (direct co  de generation)

1) Defects labeling and visualization 2) NN Exploration and benchmarking  3) Defects identifications after NN learning

T Lea;g"
_ Test -
.............................. =i
3x3 | 3x3 | 5x5 | 5x5 | 3x3 | 3x3| 5x5 | 5x5 | 3x3 | 3x3 | 5><5| 5x5 | 3x3

Recon. rate

Recon. rate

Recon
“rate

Computing complexity

8|8|8|8|16|16|16|16|32|32|32|32|32
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DEEP LEARNING AND NEUROMORPHIC
SYSTEMS AT LETI AND LIST

EXPLORATION &
EXPLOITATION

Diversity of implementations:
» Software solution/ GPU
» Reconfigurable devices / FPGA

* Dedicated implementations
* Full CMOS and binary coding: P-NEURO
e Full CMOS and “spike coding”
e Using new materials

Neuromorphic:
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N2D2 and P-Neuro: complete solution for
Deep Learning in smart nodes

 Fast benchmarking of Components Off The Shelf:
= Parallel processors

u GPU mmwm
H ; 10100
* FPGA(HLS) [ Qe -
“ CUDA 5
®™ HLS FPGA

L . = . o - -
- -
n\v\ &
Parallel CPU —

FPGA

 Performance of P-Neuro neural network processing unit

= Example on Faces extraction,
» Database of 18000 images

= Comparison of 5 different
architectures

= Focus on energy efficiency

= Expected performance of P-Neuro:
= FDSOI 28nm, 1GHz
= 1.8 TOPs/W, <0.5 mm? (4 cores)
= Fully scalable from 1 to 1024 cores P-Neuro (ASIC) |~ 500 MHz | 125000 images/W
» Ready for integration in smart nodes o

w

Target Frequency Energy




SPIKE-BASED CODING
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THE PROMISES OF SPIKE-CODING NN

- Reduced computing complexity and natural temporal and spatial parallelism
= Simple and efficient performance tunability capabilities
= SpPiking NN best exploit NVMs such as RRAM, for massively parallel synaptic memory

_ Formal neurons Bpiking neurons

Base operation - Multiply- + Accumulate only
Accumulate (MAC)

Activation function - Non-linear + Simple threshold
function

Parallelism - Spatial + Spatial and temporal
multiplexing multiplexing

Input spike —a=

m Two test chips implemented in cor

65nm Z oo

- Reptile: 3 tiles of 12 neurons g
= Spider: 25 tiles of 12 neurons

‘““JF 1

Dighalto |i

% woooo | g
» Advanced technology nodes g
- Comparison of Analog and Digital neurons i i -
== Gain of Analog neuron (less area) reduces 8 100 | "
- Curves cross at 22nm node s ol

1 lrngth (R
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DEEP LEARNING AND NEUROMORPHIC SYSTEMS
AT LETI AND LIST

EXPLORATION &
EXPLOITATION

Neuromorphic:

NOILVLNIWITdNI

MATERIALS & DEVICES
Take full advantage of advanced
devices to break the density and

power iSsues:
» 3D integration, CoolCube™,
* RRAM, PCM and new devices,
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3D SPIKING NEURAL NETWORK

m Neural Networks

== Naturally 3D for 2D inputs, layers optimally distributed in stacked dies
= Vertical connections between layers: minimizes interconnect length,
avoid routing congestion

m NEMESIS 3D two-layers SNN test chip

= 1Stlayer: 48 macro-block neurons, 1024 synapses per neuron (49 152 total)
2"d Jayer: 50 fully connected neurons, 2 400 synapses

tayer 1

Nemesis Test Chip
ALTIS 130nm
CuCu bonding

gﬂl@@@@o -]

Rurmp reairiy

e

aJ i = e
SNN circuit
mm

428 354 (-17%)

¥ C”“C‘;’]"Spath 9,00 6,63 (-26%)

[B. Belhadj, R. Heliot, P. Vivet, CASSES’2014]

=» 3D offers 2x better total area and 25% better power  efficiency vs 2D
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LEARNING FROM NEUROSCIENCE: A STDP
(SPIKE TIMING DEPENDENT PLASTICITY) PRIMER

Neuron / _
- A - STDP = correlation
'\\\:‘l y 3»“..; EleCtrlcaI ‘-“ %& ‘% detector
ALY s!fgnal' Y, pre-syhaptic post-synaptic =» Possible
7 o’ ~ Neuron Neuron learning model of
MAN Synapse )
'. Axon the brain?
Dendrite K /
100-
80 : Causality
/! e . 9t  Potentiation /!
D 6o- :
O 1 i
t . <t S O ] ?
po pre ..c__‘) 4§ 20
/\ %% 0d 6O
> (-t | ;
V > O .20- . .3
O E | Anti-Causality Ng!
*m.Depression (LTD) ¥
£0— —1 T

-80 -40 0 40 80

At = tpost B tpre
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NEW ELEMENT: RRAM AS SYNAPSES

Thermal Electrochemical
effect effect
PCM CBRAM
GST Electronic effect Ag/ GeS,
GeTe oxygen vacancies
GST + HfO,

OXRAM

B iy, TEC -

) P

A~ HOA
lw’“ j
=BEC

M.Suri, et. al, IEDM 2011

M.Suri, et. al, IMW 2012 , JAP 2012
O.Bichler et al. IEEE TED 2012
M.Suri et al., EPCOS 2013
D.Garbin et al., IEEE Nano 2013

TIN/HFO /TiITIN [ -

D.Garbin et al. IEDM 2014
D.Garbin et al., IEEE TED 2015
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Synaptic
Jlr " D Jlr weight
Vore—"VVN— Vot update
through STDP
tore < Lpost Core > Tpost
Viore I I-h tore - T tpre‘ .
> | >
VpostI I-L/ tpost .t T I-L/ tpost .t
| U
\Y
R0 || I S | ST
et
R decreases R increases

1. G. Snider, Nanoscale Architectures, 2008
2. B. Linares-Barranco et al, Nature Precedings, 2009

Post-
synaptic
spike
(feedback)

Neurons

o Pre-synaptic spike
R
—"\\W\— y
V
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BIO-INSPIRED MODELS EXPLORATION

/ Synaptic \

-.(.

f Learning rule \ / Network topology
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=» Complete tool flow for bio-inspired synapses, neuro ns and learning rules
network simulations

[O. Bichler et al., NanoArch’2014] Leti Devices Workshop | Marc Duranton | December 4, 2016 | 20




NVM SYNAPSES IMPLEMENTATIONS

m 2-PCM synapses for unsupervised cars trajectories e  xtraction

From spiking pre-synaptic

5 - Sl £ Tl

eciofiiettrecod L pwepetasd neurons(lnputs)
28 | -«Behavioral Moded Fiy h#‘-;,*'..!.‘-‘.”.
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LI, O
Crystallization/ Eﬁﬁﬁgﬁﬁgﬁﬁﬁhﬂm* ) Jpiking post
Amorphization 0 o & & Equivalent (output)
Pulse Numbar 2-PCM synapse

[O. Bichler et al., Electron Devices, IEEE Transactions on, 2012]

»  CBRAM binary synapses for unsupervised MNIST handwr itten digits
classification with stochastic learning
CBRAM 10

1 =
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.00
00001 ;

Forming/Dissolution of 18-05

. . 0102{)304'3'%60?1]309&103
conductive filament RESETISET pulse numiber [M. Suri et al., IEDM, 2012]

Conductance (m3)
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PYd EXAMPLE OF ON-GOING INVESTIGATIONS:
= VRRAM FOR NEUROMORPHIC APPLICATIONS

. Metal line
w

Investigation of VRRAM based on CBRAM stack ) e

 Etchstop layer
e 2 levels (proof of concept) -
16 levels (goal)
1 select transistor per level (proof of concept)
Integrated selector (goal)
CBRAM most suitable R for neuromorphic
OxRAM also analysed

4

| W Contact §

Bot. Elec,
bottom level

Onm

Design: support development for VRRAM

* High Density : Estimate the maximum size of a VRRAM-based array
supposing to have an integrated selector [E. Cha, ISCAS 2014]

* Neuromorphic : propose a circuit dimensioning for the neuromorphic
approach presented at IEDM 2015 (1TnR pillar ~ Synapse, NO Selector)
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AN EU COLLABORATIVE PROJECT: NEURAMS3

» Objective:

- Fabricate a chip implementing a neuromorphic
architecture that supports state-of-the-art machine
learning algorithms and spike-based learning
mechanisms.

» Features:

== 28nm FDSOI technology with RRAM synapses

- Ultra low power scalable and reconfigurable
architecture

= 50X lower dissipation than digital equivalent

= 1 FT based scalable multichip architecture platform

== A technology to implement on-chip learning, using
native adaptive characteristics of electronic synaptic
elements
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A NEW EU COLLABORATIVE PROJECT: NEURAM3

NeuRAM3

Participant no. Organization name Short name | Country

1 (Coordinator) Commisariat a l'energie atomique et CEA France
aux energies alternatives

2 Interuniversitair ~ Micro-Electronica IMEC Belgium
Centrum IMEC VZW

3 Stichting IMEC Nederland IMEC-NL | Netherlands

4 IBM Research Gmbh IBM Switzerland

5 Umiversity of Zurich, Institute of Neu- UZH Switzerland
roinformatics

6 Agencia Estatal Consejo Superior de CSIC Spain
Investigaciones Cientificas, Instituto
de Microelectronica de Sevilla

i Consiglio Nazionale delle Ricerche CNR Italy
8 Jacobs University Bremen JAC Germany
9 ST-Microelectronics 5.A. 5TM France
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LETI AND LIST ASSETS IN DEEP LEARNING

Summary of key points

e Large-scale database GPU-
accelerated learning for
CNN

* Among the leading teams on
ImageClef2015 contest

* From scratch exploration to
industrial applications

* Lead in bio-inspired STDP
- Deep learning (IEDM’11,12,14)
Application learning « Formalized spike-coding
gletrailia research for CNN, complete tool
flow for co-simulation

 Complete
'?Oeg‘?ctg:d framework with C,
FDSOI, IPs, frgr?\fgyv%rr?(s OpenCL, CUDA and
3D, MEMs, HLS exports
loT...

» Complete tool flow
for spike-coding
DSP

* 2-PCMs synapse SahEEER Hardware N _
(patented) scheme implementa P—— « Competitive reconfigurable
(IEDM'15) -tions ceeierator architecture with P-Neuro

» Spike-coding DSP
architecture
 Increased efficiency with 3D

e Lead in SNN with RRAM
devices (IEDM’14)
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