

3D INTEGRATION, A SMART WAY TO ENHANCE PERFORMANCE

<u>3D VLSI technologies</u> (3D VIA Pitch <5µm)

Hybrid bonding

3D sequential

Image sensor

HPC

How these technologies can boost

- 3D VLSI technologies: from hybrid bonding to 3D sequential integration
- 2 3D imagers
- 3 High Performance computing

3D VLSI: HYBRID BONDING AND 3D SEQUENTIAL OPTIONS

Hybrid bonding flow:

leti

Ceatech

Various options: Wafer to Wafer, Die to Wafer, Die to Die

leti

3D VLSI: HYBRID BONDING VERSUS 3D SEQUENTIAL

3D sequential

Alignment by lithography $3\sigma = 5$ nm (28nm stepper)

leti ^{Ceatech}

3D VLSI: HYBRID BONDING & 3D SEQUENTIAL OPTIONS: VIA DENSITY

3D via density

3D partitioning options

[1]: L. Brunet et al., VLSI 2016, [2] I. Sugaya et al., ASMC 2015, [3] J. De Vos, 3DIC 2016 [4] L. Peng et al., EPTC 2016 [5] D. Zhang et al. TSM 2015

- 3D VLSI technologies: from hybrid bonding to 3D sequential integration
- 2 3D imagers
- 3 High Performance computing

[1] Retine leti [2] SONY ISSCC 2017 [3] SONY ISSCC 2017, [3] SONY VLSI 2017

HYBRID CU BONDING (WTW)

Alignment

Co-development equipment/process

Advanced bonding tool generation (Gemini)

 \rightarrow Alignement performance: $3\sigma = 195$ nm

1µm pitch Hybrid Bonding

3D IMAGERS: NEW PARTITIONNING OPPORTUNITIES

3D IMAGERS: NEW PARTITIONNING OPPORTUNITIES

Hybrid bonding can be used to connect the 3D pixel to the DSP and RAM

<1 μ m 3D contact pitch \longrightarrow 3D sequential integration

300 mm industrial clean room demonstration Max TB budget is relaxed for a photodiode (700°C) ^[1] vs MOSFET (500°C)

[1]P. Coudrain et al., IEDM 2008

leti

3D IMAGERS: NEW PARTITIONNING OPPORTUNITIES

Critical process modules are now below 500℃

Cold 28nm FDSOI devices in line with high-temp. POR

- 3D VLSI technologies: from hybrid bonding to 3D sequential integration
- 2 3D imagers
- **3** High Performance Computing

REVISITING HPC CHIPS ARCHITECTURE

Complex SOC for HPC application

let

Ceatech

Huge die size (4cm²) (yield issues) Complexity wall (co-integration of technologies) Memory wall Leti's roadmap: Chiplets on active interposer

Cost reduction:

Smaller chips (improved Yield) Known good die (pre bond test) Each technology at the right silicon cost

Performance: Best technology for each chip Compatible with HBM

[1]: P. Vivet et al., ISSCC 2016 (leti)

leti ^{Ceatech}

DIE TO WAFER WITH SCALED CONTACT PITCH

[1] P. Metzger & Al « Toward a flip-chip bonder dedicated to direct bonding for productionenvironment », IWLPC 2017.

THE ULTIME IMBRICATION OF MEMORY AND COMPUTING

ightarrow 3D sequential is an opportunity to break the memory wall

leti

Ceatech

N3XT Computing system [1,2]

X 1000 gain in consumption expected with computing near memory

Neuromorphic computing

Brain-inspired computing cube

High contact density mimics the high interconnectivity of neurons
RRAM mimics the synapses

[1] Shulaker et al., IEDM 2014, [2] Aly et al., Rebooting computing, 2015

CONCLUSION: LETI 3D OFFER

• Every application recquiring a high number of interconnections or reconfigurability of the interconnections deserves to be explored in 3D

Neuromorphic

Accelerators

Displays

Implants & Wearables

HPC.

Imagers

Lighting

- Leti is your partner to evaluate the gains for your applications using 3DVLSI
- Demonstration of prototypes & Architecture partitionning

Thank you for your attention